🐔 MICHIGAN STATE UNIVERSITY

Managing Ear Rots and Mycotoxins in Silage Corn

Manni Singh & Harkirat Kaur

(collaborators: M. Chilvers, C. Difonzo, K. Cassida) Cropping Systems Agronomist

agronomy.msu.edu

msingh@msu.edu, 517-353-0226

Cropping Systems Agronomy MICHIGAN STATE UNIVERSITY MICHIGAN STATE

Desirable Silage Corn Characteristics

> What makes a good silage corn? High yield > High energy (high digestibility) High intake potential (low fiber) > High protein Proper moisture at harvest for storage > NO Mycotoxins (e.g., VOM)!

What are Mycotoxins?

- Toxic secondary metabolites produced by ascomycete fungi (causes ear/stalk rots)
- Elevated mycotoxin concentration makes corn unfit for consumption
 - Feed refusals, hormonal imbalance, edema

Mycotoxin	Dairy Cattle	Swine	Poultry	
DON (Vomitoxin)	1.0 ppm	1.0 ppm	2.0 ppm	
Zearalenone	0.4 ppm	0.3 ppm	0.01 ppm	
Fumonisin	2.0 ppm	10 ppm	20 ppm	

Values for 50% diet ration

Goeser, 2015

Mycotoxins and Ear/Stalk rots

Gibberella Ear/Stalk Rot (caused by Gibberella zeae)

- <u>Pinkish mold</u>, often begins at ear tip
- Prefer <u>cool and wet</u> conditions
- Produces: Deoxynivalenol (DON or vomitoxin), Zearalenone (ZON)

Fusarium Ear/Stalk Rot (caused by Fusarium verticillioides)

- White to purple mold, starburst pattern, scattered on ear, damaged kernels
- Prefer moderate-warm temp., wet conditions
- Produces: Fumonisins

Others- Aspergillus Ear Rot, Diplodia Ear Rot

Mycotoxins from Ears vs Stalks

🐔 **MICHIGAN STATE** UNIVERSITY

How widespread are Mycotoxins? Grower Survey

Crop reporting zone	Regions
Zone 10	Upper Peninsula
Zone 20	North-west Michigan
Zone 30	North-east Michigan
Zone 40	Western Michigan
Zone 50	Central Michigan
Zone 60	East Michigan
Zone 70	South-west Michigan
Zone 80	South-central Michigan
Zone 90	South-east Michigan

- Samples collected across Michigan (2019-2021)
- Growers also submitted their field history and management

-	20XX Corn Silage Mycotoxin Survey				
Mchige Allence for Animal Aprications	Investigating mycotoxin contamination & silage quality	MM			

The MSU Agronomy Program is providing free testing of corn silage samples for 26 different mycotoxins as part of a state survey. To receive test results, please fill out this form completely and attach to each sample. Results on mycotoxins and quality will be shared with you. Your pressnal information will stay confidential.

CONTACT	Address	Phone & or email address

FIELD NAME/ ID:	Specific location (Address, nearest X-road, or GPS coordinates)	# <u>of</u> acres

Reduced till / no-till	Yes / No
Irrigated	Yes / No
Field Drainage	Yes / No
Previous mycotoxin issue	Yes / No / unknown
	Reduced till / no-till Irrigated Field Drainage Previous mycotoxin issue

CURRENT SEASON Pesticide applications Agronomic info Pests or damage observed Planting Foliar Fungicide Yes / No Western bean cutworm Yes / No Product? Date For Ear Rot Early App. (V6) Other ear-feeding insects Yes / No (near R1) Seeding Corn rootworm Yes / No rate Harvest Ear or stalk molds Yes / No Date Foliar Insecticide Yes / No % moisture Product? Tar Spot Yes / No

INSTRUCTIONS

- <u>Take a representative sample</u>: During harvest, take multiple samples from the field & mix them well in a bucket, then collect a 1-pound subsample to submit for testing.
- Preserve the sample before shipment: Preferred method- Dry the sample (e.g. air dry) and pack in a paper bag. An alternative is to freeze the sample on the same day of collection.
- <u>Submitting samples</u>: Drop off or ship the sample to the address below, before November 30. Be sure to
 attach this completed sheet to each sample that you submit.

Attn: Silage Survey, MSU Agronomy lab, 4450 Beaumont Road, Lansing MI 48910 *For any queries please reach us at 510-356-7133 or 517-775-8174

Mycotoxins across Michigan

- Mycotoxins present in 100% of the samples
- Higher mycotoxins in the thumb region and southwestern MI

Mycotoxin co-occurrence

- Multiple mycotoxins were detected
- At least seven mycotoxins present in each sample
- Strong correlations
 between mycotoxins
 coming from same
 pathogen species

	Deoxynivalenol 3-β-D-glucoside	15-acetyl- deoxynivalenol	Zearalenone	Funonisin B1	Funonisin B2	Funonisin B3	Moniliformin	Enniatin B	Enniatin B1	Enniatin A	Beauvericin	T-2 toxin
Deoxynivalenol	0.64***	0.72***	0.45**	0.27	0.26	0.26	0.27	0.23	0.19	0.16	0.33*	0.15
Deoxynivale	nol 3-β-D- glucoside	0.84***	0.89***	0.38*	0.36*	0.35*	0.37*	0.38*	0.33*	0.3	0.51**	0.37*
	deox	15-acetyl- ynivalenol	0.73***	0.40**	0.47**	0.45**	0.48**	0.28	0.22	0.18	0.46**	0.3
		Ze	aralenone	0.41**	0.41**	0.41**	0.37*	0.44**	0.29	0.32*	0.54**	0.40**
			Fum	onisin B1	0.94***	0.95***	0.83***	0.15	0.05	0.3	0.82***	0.36*
2019	data			Fum	onisin B2	1.00***	0.90***	0.19	0.11	0.35*	0.70***	0.34*
					Fum	onisin B3	0.90***	0.17	0.09	0.34*	0.70***	0.32*
						Mor	niliformin	0.27	0.17	0.29	0.61***	0.34*
							E	nniatin B	0.80***	0.41**	0.25	0.59***
								En	uniatin B1	0.38*	0.18	0.65***
									E	nniatin A	0.34*	0.33*
No /	Aflat	toxir	ns fo	ound	!!					Be	auvericin	0.56**
												T-2 toxin

Kaur et al., 2024 (World Mycotoxin Journal)

Agronomic factors

	DON			ZON			Fumonisin		
Agronomic Factor	p-value		Nagelkerke's R-squared		p-value	Nagelkerke's R-squared	agelkerke's R-squared p-value		Nagelkerke's R-squared
Crop Rotation		0.07	0.42		0.21	0.003		0.04	0.37
Planting Date		0.03	0.49		0.42	< 0.001		0.08	0.31
Tillage		0.23	0.01		0.38	< 0.001		0.20	0.03

Kaur et al., 2024 (World Mycotoxin Journal)

Planting Date and Mycotoxins

Low concentrations across the study

> DON most frequently occurring

Highest no. of samples with DON > 1µg g⁻¹ in mid-planted silage

Higher concentrations may occur in a more favorable year

Early: Planted before May 10; Mid: Planted between May 11 to May 30; Late: Planted after May 31

What's happening in Mid-Planted silage corn?

> Thirty years average rainfall data for July, August, September

Early: Planted before May 10; Mid: Planted between May 11 to May 30; Late: Planted after May 31

Planting date: Yield and Nutritive value

Site- vear	Planting Date	Biomass Yield	ADF	NDF	Starch	СР	IVTD	NDFD	Milk per ton	Milk per acre
ycai	Date	Mg ha ⁻¹		g	g kg ⁻¹ of DM	g kg ⁻¹ of NDF	lbs ton-1	tons acre ⁻¹		
	Early	16.9 a	153 b	200 a	463 a	76.7 a	881 a	605 a	3080 a	12.9 a
MSU 2020	Mid	14.8 b	198 a	209 a	409 b	70.5 b	843 b	552 b	2474 b	9.01 b
2020	Late	17.6 a	196 a	217 a	356 c	75.4 a	844 b	581 b	2180 b	9.54 b
MOL	Early	17.9 a	161 b	264 a	459 a	74.3 a	905 a	636 a	3336 a	14.1 a
MSU 2022	Mid	13.6 b	172 a	258 a	406 b	54.2 b	864 b	570 b	3060 b	11.1 b
	Late	19.7 a	168 ab	221 b	412 b	76.9 a	863 b	589 b	3270 ab	13.9 a

> Early planted corn consistently had higher dry yield and nutritive value

Early: Planted before May 10; Mid: Planted between May 11 to May 30; Late: Planted after May 31

Hybrid Selection & Fungicide impacts

Multi-location field trials (2019-2021)

- RCBD with five replications
 - > 3 Levels of hybrid insect protection trait
 - 2 levels of fungicide treatment using Proline 480SC (Prothioconazole) @ 5.7 oz acre⁻¹ at Silking stage

Hybrid Insect Protection Trait	r Protein	Insect Protection
Bt _N	none	No Insect protection
Bt _E	Cry1F	ECB
Bt _{EW}	Cry1F + Vip3A	ECB & WBC
	V	VBC: Western Bean Cutworm
	F	CB: European Corn Borer

Insect protection trait: Insect feeding

Presence of two insect protection proteins help control insect damage

Non-Bt: No protection; Bt_E: protection against ECB; Bt_{EW}: protection against ECB and WBC. ECB (European corn borer), WBC (Western bean cutworm)

Insect protection trait: Ear rot incidence

Ear rot incidence did not differ among insect protection levels (except Wood 2020)

Non-Bt: No protection; Bt_E: protection against ECB; Bt_{EW}: protection against ECB and WBC. ECB (European corn borer), WBC (Western bean cutworm)

Insect protection trait: Ear rot severity

Non-Bt: No protection; Bt_E: protection against ECB; Bt_{EW}: protection against ECB and WBC. ECB (European corn borer), WBC (Western bean cutworm)

🐔 MICHIGAN STATE UNIVERSITY

Relation between insect injury and ear rots

Weak or no correlation was seen between ear rot and WBC damage at other site years

Insect protection trait: Mycotoxin

Using "effective" hybrid insect protection traits reduces mycotoxin accumulation

Non-Bt: No protection; Bt_E: protection against ECB; Bt_{EW}: protection against ECB and WBC. ECB (European corn borer), WBC (Western bean cutworm)

Mycotoxins and Ear Damage

- Scout & spray and/or use effective insect protection traits
- Environmental conditions still a key

Fungicide Applications – Ear Rot and DON

Site-year	Fungicide treatment	ungicide treatment Ear Rot Incidence DON c (%) (µg g	
Allogon 2020	Non-treated	16.3 a	1.50 a
Allegali 2020	Treated	6.70 b	0.59 b
Dronah 2020	Non-treated	10.3 a	1.94 a
Dranch 2020	Treated	Treated 7.2 a	0.95 b
Incham 2020	Non-treated	19.6 a	1.35 a
Ingnani 2020	Treated	23.3 a	0.83 b
L onowoo 2020	Non-treated	20.0 a	1.64 a
Lenawee 2020	Treated	10.7 b	23.3 a 0.83 b 20.0 a 1.64 a 10.7 b 0.78 b 20.7 a
Other site years	Non-treated	10.5 a	2.07 a
Other site-years	Treated	10.3 a	1.81 a

Seeding Rate: Insect feeding and Disease

Insect feeding and ear rot severity increased with increase in seeding rate
 No differences observed in mycotoxin concentration

🐔 **MICHIGAN STATE** UNIVERSITY

Forage yield

- Quadratic relation between plant population and yield
- Agronomic optimal plant density: 36,000 to 42,000 seeds acre⁻¹

Nutritive Value

Forage nutrients	Site-year	Seeding Rate (no. of seeds ha ⁻¹)					
C .	-	28,000	34,000	40,000	46,000		
ADE (g kg-1 of DM)	Huron 2021	210 b	200 b	230 ab	272 a		
ADF (g kg ² 01 DM)	Lenawee 2022	174 b	184 ab	207 ab	223 a		
	Huron 2021	3 <u>73 bc</u>	358 c	381 b	<u>46</u> 6 a		
NDF (g kg ² 01 DM)	Lenawee 2022	341 b	353 b	384 ab	407 a		
Stanch (g kg:1 of DM)	Huron 2021	378 a	405 a	397 a	298 a		
Starch (g kg ⁺ of DM)	Lenawee 2022	372 ab	399 ab	415 a	339 b		
IVTD (a had of DM)	Huron 2021	841 a	846 a	841 a	791 b		
$\mathbf{IV} \mathbf{ID} (\mathbf{g} \mathbf{K} \mathbf{g}^{T} 0 \mathbf{I} \mathbf{D} \mathbf{N} \mathbf{I})$	Lenawee 2022	855 b	846 b	891 a	868 ab		
	Huron 2021	585 a	571 ab	576 ab	552 b		
NDFD (g kg ⁻¹ of NDF)	Ottawa 2021	603 a	607 a	595 b	594 b		
	Lenawee 2022	682 a	625 b	625 b	626 b		

Nutritive Value

Forage nutrients	Site-year	Seeding Rate (no. of seeds ha ⁻¹)				
		28,000	34,000	40,000	46,000	
ADF (g kg ⁻¹ of DM)	Huron 2021	210 b	200 b	230 ab	272 a	
	Lenawee 2022	174 b	184 ab	207 ab	223 a	
NDF (g kg ⁻¹ of DM)	Huron 2021	373 bc	358 c	381 b	466 a	
	Lenawee 2022	341 b	353 b	384 ab	407 a	
Starch (g kg ⁻¹ of DM)	Huron 2021	378 a	405 a	397 a	298 a	
	Lenawee 2022	372 ab	399 ab	415 a	339 b	
IVTD (g kg ⁻¹ of DM)	Huron 2021	841 a	846 a	841 a	791 b	
	Lenawee 2022	855 b	846 b	891 a	868 ab	
NDFD (g kg ⁻¹ of NDF)	Huron 2021	585 a	571 ab	576 ab	552 b	
	Ottawa 2021	603 a	607 a	595 b	594 b	
	Lenawee 2022	682 a	625 b	625 b	626 b	

MICHIGAN STATE UNIVERSITY

Impacts of Ensiling

- Important for forage conservation
- Compaction density determines the porosity and airflow
- Fiber digestibility increased postensiling
- Mycotoxin concentrations increased post-ensiling (at low density)

Density: 15, **30**, 50 lbs ft⁻³

Mycotoxin Management Options

Hybrid selection

- > Residue management:
 - Crop rotation with a non-host crop
- <u>Timely planting</u>, reduce plant stress
- Manage for uniformity
- Fungicide application (timing: soon after silking, chemistry: use Triazoles but NOT Headline (Strobilurins)
- Insect control (Bt traits, scout and spray)
- > Harvest high risk fields first, optimize <u>ensiling</u>
- Diet: dilute, add binders?

Resources: <u>agronomy.msu.edu</u>

Extension articles: <u>https://www.canr.msu.edu/news/fungal-infections-of-corn-and-management-strategies</u>
 Handy Bt Trait Table <u>https://www.texasinsects.org/bt-corn-trait-table.html</u>
 Corn hybrid performance trials (from universities or seed companies)
 Research papers from our lab
 <u>https://doi.org/10.1163/18750796-bja10005</u> <u>https://doi.org/10.3390/toxins14070431</u>

- https://doi.org/10.1002/agj2.21620
- <u>https://doi.org/10.1002/agj2.21342</u>

https://doi.org/10.3390/toxins1407043 https://doi.org/10.1002/cft2.20258

> Technicians:

- Patrick Copeland
- Lorato Wood

Graduate Students

- Benjamin Agyei
- Paulo Arias
- Wallas da Silva
- Previous students

Undergrad/Intern students

- Past students
- Mike Particka
- Tom Wenzel
- Farmer cooperators

- > Dr. Chris Difonzo
- > Dr. Marty Chilvers
- Dr. Kim Cassida
- Phil Kaatz
- Phil Durst
- Martin Mangual
- Brook Wilke

Manni Singh msingh@msu.edu

517-353-0226

agronomy.msu.edu

Thanks!

C

MICHIGAN STATE UNIVERSITY Extension

Michigan Alliance for Animal Agriculture

Seed companies

Summary: Silage corn

Hybrid selection considerations:

- > High silage yield and quality
- Relative maturity of hybrid (match local GDD)
- Trait package- based on pest pressure
- Dual vs silage type hybrids (short corn?)
- > Agronomic traits- disease/drought tolerance

> Key management decisions:

- Crop rotation, Timely planting
- ➢ Optimum seeding rate (≥ 36,000 seeds/ac)
- Harvest at peak quality
- Fungicide/insecticide application (based on scouting)
- > Mycotoxin management

Grain corn: Ear-feeding insects vs Mycotoxins

- Scout & spray and/or use effective insect protection traits
- Environmental conditions still play a key role in mycotoxin accumulation

Handy Bt trait table: https://www.texasinsects.org/bt-corn-trait-table.html

Critical Agronomic Decisions for Silage Corn Production

- Hybrid Selection
- Planting date
- Seed Rate, row spacing
- > Fertility
- Irrigation
- Weed Management
- Pest Management
- Harvest timing

